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Two noninteracting qubits are coupled to an environment. Both coupling and environment are chosen as
random matrices to obtain generic results. The initial state of the pair ranges from a Bell state to a product
state. Decoherence of the pair is evaluated analytically in terms of purity; Monte Carlo calculations confirm
these results and also yield concurrence of the pair. Entanglement within the pair accelerates decoherence.
Numerics displays the relation between concurrence and purity known for Werner states. A closed albeit
heuristic formula for concurrence decay ensues.
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I. INTRODUCTION

Decoherence is a subject of increasing interest in basic
research �1–3� as well as in the context of stability of quan-
tum information processes �4,5�. It is usually discussed in a
context where the environment has a continuous spectrum or
at least a very high spectral density. This implies that one
relevant time scale—namely, Heisenberg time—moves off to
infinity and all effects associated with this scale are invisible.
Yet any experiment exploring the increase of entanglement
of some system with a microscopically controlled environ-
ment will take place in a different setting. We shall present a
generic framework that yields information on the scale of the
Heisenberg time and reproduces the standard stochastic re-
sults at longer times. Random matrix theory �6� �RMT� mod-
els are excellent candidates to fulfill these conditions. Their
surprising breadth of applications �see, e.g., the review �7�
and the topical volume �8�� indicates generosity. Also RMT
models that relate to the Caldeira-Legget model �9� or de-
scribe fast decoherence in strongly coupled systems �10�
have been discussed.

The evolution of entanglement within a pair of qubits or
spin-1 /2 particles as well as of its coherence under the in-
fluence of an environment is paradigmatic for the stability of
teleportation �11� and indeed for any quantum information
process �4�. The environment�s� as well as the couplings will
be modeled by matrices from one of the classical ensembles
�12�. In the present article we shall concentrate on the Gauss-
ian unitary ensemble �GUE�, which describes time-reversal
breaking dynamics, mainly because it provides the simplest
analytics. The model we use is inspired by one developed for
the evolution of fidelity �13� where it successfully describes
experiments �14�. It was extended to give the evolution of
echo-purity �15�; analytical results were obtained by a Born
expansion in the interaction picture. Treating the coupling to
the environment as the perturbation this tool can be used to
study decoherence.

Purity, due to its simple analytic structure, is a particularly
useful tool to describe the evolution of decoherence of a

subsystem—i.e., its entanglement with the environment �1�.
Concurrence provides a measure for the degree of entangle-
ment within a pair of qubits �16�. We apply the RMT model
to both measures. For purity we obtain analytic results along
the lines mentioned above, and for concurrence we perform
numerical studies. We find that purity of an entangled pair
decays faster than purity of a product state, but we shall be
able to go one step further. Numerically we show that the
relation of purity to concurrence demonstrated for a specific
dynamical model �17� holds for the random matrix model.
Thus we can expect this behavior to be typical. This relation
agrees numerically with the analytic one for Werner states.
Combining the two results we give a closed, though heuris-
tic, expression for concurrence decay. Both quantities and
thus their relation are accessible by quantum tomography in
experiments with trapped ions or atoms, where interaction
with a controlled environment is feasible �18�. Thus the re-
sults are susceptible to experimental verification with state of
the art techniques.

Concurrence of a density matrix � representing the state
of a pair of qubits is defined as

C��� = max�0,�1 − �2 − �3 − �4� , �1�

where �i are the eigenvalues of the matrix
����y � �y��*��y � �y� in nonincreasing order, ��� denotes
complex conjugation in the computational basis, and �y is a
Pauli matrix. Purity is defined as

P��� = Tr �2. �2�

II. THE MODEL

We study dynamics on a Hilbert space with the structure
H=H1

q
� H1

e
� H2

q
� H2

e, where Hi
q indicates �two-

dimensional� qubit spaces, while Hi
e will indicate

N-dimensional environments. We consider unitary dynamics
on the entire space and obtain nonunitary dynamics for the
qubits by partial tracing over the environment�s�. To consider
the effect of the environment on the pair of qubits alone, we
cannot allow any interaction within the pair but only inter-
actions with the environment�s�. For convenience we also*Electronic address: carlospgmat03@gmail.com

PHYSICAL REVIEW A 75, 012106 �2007�

1050-2947/2007/75�1�/012106�5� ©2007 The American Physical Society012106-1

http://dx.doi.org/10.1103/PhysRevA.75.012106


neglect any possible evolution for each qubit individually,
which is not induced by the coupling to the environment.
The latter is nonessential to our argument, but simplifies the
analytic treatment. We thus use the Hamiltonian

H = H1
e + H2

e + �1V1
e,q + �2V2

e,q. �3�

The first two terms correspond to dynamics of the environ-
ments. The next two represent the coupling of the qubits to
the corresponding environment. To obtain further simplifica-
tion, we consider one of the qubits as a spectator, i.e., we
assume that it has no coupling to an environment ��2=0�.
One environment becomes irrelevant, and we obtain the ef-
fective Hamiltonian

H� = H1
e + �V1

e,q. �4�

Note that we do consider entanglement with the spectator.
This yields the simplest Hamiltonian for which we can ana-
lyze the effect of an environment on a Bell pair. The envi-
ronment Hamiltonian H1

e will be chosen from a classical en-
semble �12� of N�N matrices and the coupling V1

e,q from
one of 2N�2N matrices. As usual, the GUE ensemble,
which represents time-reversal invariance breaking dynam-
ics, is easier to handle analytically than the Gaussian or-
thogonal one. Here we focus on the former. Evolution of
both purity and concurrence of the pair of qubits can readily
be simulated in a Monte Carlo calculation, and due to the
simple structure of purity, it is possible to compute this quan-
tity analytically in linear response �LR� approximation.

III. PURITY DECAY OF A BELL PAIR

The evolution operator is U�=exp�−ıH�t�, so the density
matrix in Eqs. �1� and �2� is

��t� = TrenvU����0�	
��0��U�
† , �5�

where ���0�	 is the initial state of the system. Since U0 is a
local operation in the environment, it will not affect the value
of �. Thus we can equally evolve with U0

†U� instead of U�

alone. It is convenient to use U0
†U� since for small � this

operator remains in some sense near to unity for longer
times.

To calculate the value of purity, we take the following
averages and approximations. First we expand the echo op-
erator �U0

†U�� as a Born series requiring small � and/or short
times. We average both V1

e,q �which will be called V from
now on� and H1

e over the appropriate GUE. Finally we aver-
age the initial state and obtain Eq. �13�. This is the same
scheme as the one followed in Ref. �13� for fidelity decay,
though details are more complicated �10� due to the partial
traces.

Following �13� we write the Born series to second order
as

U0
†U� � 1 − ı�I�t� − �2J�t� , �6�

with

I�t� = �
0

t

d�Ṽ���, J�t� = �
0

t

d��
0

�

d��Ṽ���Ṽ���� . �7�

Here Ṽ�t� is the coupling operator in the interaction picture:

Ṽ�t�=U0
†VU0. Writing ���0�	=
�=1

4N x���	 and using Eq. �6�,
purity reads as

P�t� � 1 − �2�Re AJ − A1 − A2 + Re A3� , �8�

where

AJ = 4x�xi�jk
* xi�j�k�xij�k�

* Jijk,��t� , �9a�

A1 = 2x�x�
*xi�j�k�xij�k�

* Iijk,��t�Ii�jk,�
* �t� , �9b�

A2 = 2x�xi�jk
* xi�j�k�x�

*Iijk,��t�Iij�k�,�
* �t� , �9c�

A3 = 2x�xi�jk
* x�xij�k�

* Iijk,��t�Ii�j�k�,��t� �9d�

�summation over repeated indices is assumed�. Here and in
the sequel indices run as follows: Greek ones over the whole
Hilbert space, i’s over the environment, j’s over the first
qubit, and k’s over the spectator qubit. Note that we use the
natural notation for the indices of vectors in a space which is
a tensor product of several spaces.

We now average the perturbation V over the GUE using

Vm,n	=0 and 
Vm,m�Vn,n�	=	m,n�	m�,n. Due to the unitary in-
variance of the GUE we may choose the basis that diagonal-
izes H1

e yielding eigenvalues Ei. Then


J�t�	ijk,i�j�k� = 2	ijk,i�j�k��
0

t

d��
0

�

d��

i�

eı���−���Ei�−Ei�.

�10�

The matrix elements of the tensors I � I and I � I*, averaged,
yield


Iijk,lmn�t1�Ii�j�k�,l�m�n��t2�	

= − 
Iijk,lmn�t1�Il�m�k�,i�j�n�
* �− t2�	

= 	ijk,l�m�n	i�j�k�,lmn��
0

t1

d��
0

t2

d��eı�Ei−El���−���.

Next we average H1
e over the GUE using that



i,i�e
ı�Ei−Ei��t	=N�1+	�t /�H�−b2�t /�H�� in the large- N limit.

Here b2�t /�H� is the form factor of the GUE �7� and �H the
Heisenberg time, set to 2
 throughout this article.

The initial state is a product of pure states for the qubit
pair and the environment. For the latter we use a random
initial state 
ixi�i	, constructed in the large-N limit, using
complex random numbers xi distributed according to a
Gaussian centered around zero with width 1/�N. For the pair
of qubits we choose a completely general pure state. Since
we still have the freedom to perform an arbitrary unitary
local operation on each qubit due to the invariance properties
of the GUE and the tensor product structure of the Hamil-
tonian, we select a basis in which the initial state for the two
qubits has the form
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���	 = cos ��00	 + sin ��11	, � � �0,
/4� . �11�

The degree of entanglement is characterized by �; in fact,
C����	
����=sin 2�. Hence our initial state can be written as
���0�	=
ixi � i	 ���	. Neglecting higher-order terms in 1/N,
we obtain 

AJ		=2f�t� and 

A2		=g�f�t� with

f�t� = �2t�H +
2t3

3�H
if 0 
 t � �H,

2t2 +
2�H

2

3
if t � �H, � �12�

and g�=cos4 �+sin4 �. To leading order 

A1		= 

A3		=0.
We obtain

PLR�t� = 1 − �2�2 − g��f�t� . �13�

From the explicit dependence of the result on g�, we also see
that the purity decay will be faster the more entangled the
initial state is. The validity of this approximation is limited to
large values of purity—i.e., short times or weak coupling.
This is valuable for applications to quantum information, but
we are interested in the dynamical picture as a whole and
thus would like to obtain an expression valid for a wide
range of physical situations. As a way to achieve this for
fidelity decay, exponentiation of the leading term of the lin-
ear response �ELR� formula was proposed �19�. A similar
approximation is taken here to obtain PELR�t�. In order to
calculate the appropriate formula, we must satisfy PELR�t�
� PLR�t� for small t and consider correct asymptotics. These
will be estimated as the purity after applying a totally depo-
larizing channel on one qubit to the two-qubit state, Eq. �11�.
The expected asymptotic value is g� /2, and the final expres-
sion is

PELR�t� =
g�

2
+ �1 −

g�

2
�e�PLR�t�−1�/�1−g�/2�. �14�

This result is in excellent agreement with numerics as shown
in Fig. 1. Here we obtain two different time regimes, an
exponential one �Fermi golden rule� and a Gaussian one for
weak perturbation. The time scale which defines the cross-
over between the two regimes is the Heisenberg time of the
environment.

We have obtained these results using a spectator model on
the one hand because it is the simplest one and on the other
because it seems amusing and also quite characteristic of
quantum mechanics that via entanglement, the mere presence
of a noninteracting particle is relevant. Yet the general case
may be more important and can be evaluated along the same
lines for two independent environments. The form of the
result is

PLR
�d��t� = 1 − �2 − g����1

2f1�t� + �2
2f2�t�� , �15�

where f i�t� is identical to f�t� as in Eq. �12�, but using the
Heisenberg time of Hi

e and the �’s are the couplings to each
environment. Both particles interacting with a single envi-
ronment implies taking f1�t�= f2�t�= f�t� in the previous for-
mula. The extension to longer times using exponentiation
must take into account the fact that both qubits will deco-

here; hence, the asymptotic value will be 1/4:

PELR
�d� �t� =

1

4
+

3

4
e�4/3��PLR

�d���t�−1. �16�

IV. ENTANGLEMENT DECAY OF A BELL PAIR

We have an approximate formula for the decay of purity
of a Bell pair. What about concurrence? At this point we take
up a result �17� for the behavior of a Bell pair coupled to a
kicked spin chain �20�. For a wide range of situations the
decay of a pure Bell state leads to purities and concurrences
that closely follow those of a Werner state in a concurrence-
purity �CP� diagram �17�. To test model independence and
thus universality of this behavior we make the corresponding
numerical simulations in the RMT model. We find that the
Werner state CP relation is quite well fulfilled in the large-N
limit, as can be seen in Fig. 2, where results for fixed cou-
pling but different sizes of the RMT environment are shown.
Studying other couplings allowed by the full Hamiltonian,
Eq. �3�, leads to similar results even if we are in different
purity decay regimes. A partial explanation for this behavior
can be found in �21�, and a deeper study of this fact will be
done in a future paper.

We have then the second relevant result of this article;
namely, the relation of purity to concurrence for a noninter-
acting Bell pair interacting with a chaotic environment fol-
lows generically the curve of a Werner state. The importance
of this statement is underlined by the fact that the actual state
reached at any time is typically not a Werner state. This is
tested by considering the spectrum of the density matrix,
which should display a triple degeneracy for a Werner state.
In fact a typical spectrum at P=0.51 is �0.692, 0.142, 0.110,
0.056�.
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FIG. 1. �Color online� We show the evolution of purity for sepa-
rable states �purple triangles�, Bell states �green circles�, and con-
currence for Bell states �blue squares� in the crossover regime with
significant decay before and after Heisenberg time. The lines show
theoretical predictions given by Eqs. �14� and �17�. The environ-
ment has dimension 210, and the perturbation strength is �=0.025.
In the inset we observe the Fermi golden rule regime for a larger
perturbation �=0.1.
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Having established the genericity of the known CP rela-
tion for a Werner state �17� we can insert the expression �14�
for purity and obtain the heuristic result

CELR�t� = max�0,
�12PELR�t� − 3 − 1

2
� �17�

for concurrence decay. In Fig. 3 we compare this relation to
a Monte Carlo calculation and see that it describes the decay
of concurrence of a Bell pair quite well. Notice that entangle-
ment sudden death �22� is seen in Eq. �17� and Fig. 3. We
inherit the encountered time regimes for purity. Since the
exponential behavior can be obtained letting the Heisenberg
time go to infinity, we retrieve results derived from a master
equation approach �23�.

V. CONCLUSIONS

Some points are worth mentioning: �a� We see significant
deviations from the usual exponential decay at times of the
order of the Heisenberg time as defined by the environment.
Thus, if the spectrum of the environment becomes very
dense and, correspondingly, the Heisenberg time moves off
to infinity, we recover the usual stochastic result. �b� If the
transition region can actually be seen, then the spectral stiff-
ness of a chaotic environment has a small but significant
stabilizing effect. The absence of spectral stiffness can be

modeled by the so-called Poisson random ensemble �24� and
leads to a faster decay. �c� We have limited our discussions to
the GUE for two reasons. The simple expression of the form
factor yields a concise final expression for purity decay. An
additional advantage resulting from the unitary invariance of
the coupling is that the final result is invariant under any
local operation at each qubit. This is no longer guaranteed
for orthogonal invariance only; the implications will be stud-
ied in a later paper.

Summarizing, we have developed a random matrix model
for the evolution of a Bell pair interacting with a generic
chaotic environment. Within this framework we derive the
linear response approximation for the purity decay of a Bell
pair and show that it differs significantly from decay of a
product state of two qubits, even in the extreme case, where
one of the qubits is only a spectator. Exponentiation extends
the validity of this result far beyond its original reach. Monte
Carlo calculations show that the relation between concur-
rence and purity, as obtained for Werner states, holds for
RMT models and we thus have shown it to be generic. Based
on these results we have obtained and tested a heuristic for-
mula for the decay of concurrence of a noninteracting Bell
pair.
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